{ "cells": [ { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "from river import datasets\n", "import pandas as pd\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Bike sharing station information from the city of Toulouse.\n", "\n", "The goal is to predict the number of bikes in 5 different bike stations from the city of\n", "Toulouse.\n", "\n", " Name Bikes \n", " Task Regression \n", " Samples 182,470 \n", " Features 8 \n", " Sparse False \n", " Path /Users/dhaval/river_data/Bikes/toulouse_bikes.csv \n", " URL https://maxhalford.github.io/files/datasets/toulouse_bikes.zip\n", " Size 12.52 MB \n", "Downloaded True " ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset = datasets.Bikes()\n", "dataset" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "train_df_X = []\n", "train_df_y = []\n", "for X, y in iter(dataset):\n", " train_df_X.append(X)\n", " train_df_y.append(y)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "train_df = pd.DataFrame(train_df_X)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "train_df[\"target\"] = train_df_y" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | moment | \n", "station | \n", "clouds | \n", "description | \n", "humidity | \n", "pressure | \n", "temperature | \n", "wind | \n", "target | \n", "
---|---|---|---|---|---|---|---|---|---|
0 | \n", "2016-04-01 00:00:07 | \n", "metro-canal-du-midi | \n", "75 | \n", "light rain | \n", "81 | \n", "1017.00 | \n", "6.54 | \n", "9.30 | \n", "1 | \n", "
1 | \n", "2016-04-01 00:00:16 | \n", "place-des-carmes | \n", "75 | \n", "light rain | \n", "81 | \n", "1017.00 | \n", "6.54 | \n", "9.30 | \n", "3 | \n", "
2 | \n", "2016-04-01 00:00:35 | \n", "place-des-carmes | \n", "75 | \n", "light rain | \n", "81 | \n", "1017.00 | \n", "6.54 | \n", "9.30 | \n", "3 | \n", "
3 | \n", "2016-04-01 00:04:50 | \n", "place-esquirol | \n", "75 | \n", "light rain | \n", "81 | \n", "1017.00 | \n", "6.54 | \n", "9.30 | \n", "2 | \n", "
4 | \n", "2016-04-01 00:05:29 | \n", "place-esquirol | \n", "75 | \n", "light rain | \n", "81 | \n", "1017.00 | \n", "6.54 | \n", "9.30 | \n", "2 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
182465 | \n", "2016-10-05 09:53:00 | \n", "pomme | \n", "88 | \n", "overcast clouds | \n", "84 | \n", "1017.34 | \n", "17.45 | \n", "1.95 | \n", "12 | \n", "
182466 | \n", "2016-10-05 09:53:27 | \n", "place-esquirol | \n", "88 | \n", "overcast clouds | \n", "84 | \n", "1017.34 | \n", "17.45 | \n", "1.95 | \n", "32 | \n", "
182467 | \n", "2016-10-05 09:53:39 | \n", "metro-canal-du-midi | \n", "88 | \n", "overcast clouds | \n", "84 | \n", "1017.34 | \n", "17.45 | \n", "1.95 | \n", "5 | \n", "
182468 | \n", "2016-10-05 09:54:04 | \n", "pomme | \n", "88 | \n", "overcast clouds | \n", "84 | \n", "1017.34 | \n", "17.45 | \n", "1.95 | \n", "11 | \n", "
182469 | \n", "2016-10-05 09:57:18 | \n", "pomme | \n", "88 | \n", "overcast clouds | \n", "84 | \n", "1017.34 | \n", "17.45 | \n", "1.95 | \n", "12 | \n", "
182470 rows × 9 columns
\n", "