
Prequential Model Selection for Time Series
Forecasting based on Saliency Maps

1st Shivani Tomar
Trinity College Dublin
IBM Research, Ireland

Dublin, Ireland
tomars@tcd.ie/shivani.tomar1@ibm.com

2rd Seshu Tirupathi
IBM Research, Ireland

Dublin, Ireland
seshutir@ie.ibm.com

3nd Dhaval Vinodbhai Salwala
IBM Research, Ireland

Dublin, Ireland
dhaval.vinodbhai.salwala@ibm.com

4th Ivana Dusparic
Trinity College Dublin

Dublin, Ireland
ivana.dusparic@tcd.ie

5th Elizabeth Daly
IBM Research, Ireland

Dublin, Ireland
elizabeth.daly@ie.ibm.com

Abstract—Over the last few years, incremental machine learn-
ing for streaming data has gained significant attention due
to the need to learn from a constantly evolving stream of
data without the need to store it. The advent of big data has
further fuelled research on developing systems that can cope with
continuously changing data streams and tackle the challenges
associated with historical data requirements. The problem of
time series forecasting has been studied using varied approaches
like neural networks, ensemble methods, decision trees and rules,
support vector machines to name a few. However, neural network
models have gained particular attention in dealing with changing
data distribution due to their generalization abilities. In this
paper, we propose a prequential framework named PS-PGSM
which involves incrementally training the base models and online
Regions of Competence (ROC) computation followed by selection
of the best forecaster for the task of time series forecasting
using saliency maps. We build upon the state-of-the-art approach
named OS-PGSM (Online Model Selection using Performance
Gradient based Saliency Maps) in which the model training
and ROC computation is performed offline. Past research has
demonstrated that a set of different models enables specialization
for each model compared to a single forecasting model which is
particularly useful when predicting for an evolving time series
sequence. Our approach uses saliency maps for prequential cal-
culation of ROC for each model to find the best forecaster based
on the performance of each model. We evaluate the proposed
approach against OS-PGSM, as well as against previous best
performing model by first conducting preliminary experiments on
10 real-world time series datasets and then using 2 real-world big
datasets to showcase its applicability to big data. Experimental
results not only validate the effectiveness of our approach for
big data but also demonstrate superior performance in terms of
prediction accuracy and computational time efficiency while also
handling concept drift.

Index Terms—Incremental machine learning, saliency maps,
time series, neural networks.

I. INTRODUCTION

The notion of stationarity in streaming time series data
is often violated in realistic settings where the underlying
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data distribution changes over time referred to as Concept
Drift [11]. This is true for most real-world scenarios where
the statistical properties of the incoming data tend to change
due to factors like seasonality and changes in the outside
environment. It is of vital importance to deal with this phe-
nomenon for machine learning models to predict accurately
on constantly evolving time series data. Previous research
[7] [1] [4] in this field has shown that different forecasting
models specialize on different parts of the input time series
and also exhibit varying levels of performance over time. This
has motivated the use of a combination of models specializing
on different parts of the input sequence rather than a single
model to predict over the entire incoming sequence of data.
The next step is to either select the best model from this
pool of models or combine the results of all the models using
an aggregate function. When selecting the best model, meta-
learning models [21] or metrics like ROC have been used
to select the most suitable model for prediction at the next
time-step. ROCs are parts of the input sequence where a
candidate model performs better than the rest of the candidate
models. Previous works [8] [22] demonstrate that ROCs are
calculated on the validation dataset in an offline setting. We
build upon the original work [22] which contributed the
framework named OS-PGSM, a novel approach of online CNN
selection based on the use of gradient-based saliency maps
for computing ROCs offline for time series forecasting. The
use of saliency maps is fairly new to the context of time
series and this work provides a promising direction towards
introducing explainability into the model selection process.
Since we are dealing with big data in streaming setting, we
use prequential approach [6] to evaluate the models as it is
commonly used in such scenarios [11]. In this paper, we
propose our approach named PS-PGSM (Prequential Selection
using Performance Gradient based Saliency Maps) where we
perform prequential training and ROC calculation to evaluate
the model performances. We compute the ROCs online on
the same training minibatch that is used to prequentially train



the candidate models. This method is applicable to both small
and big time series data, however it is of particular relevance
to big data in streaming setting where historical data cannot
be stored offline due to limited computational resources. We
demonstrate the performance of our approach by predicting
on 2 real-world time series big datasets and 10 small time
series datasets as used in [22]. In order to further validate the
performance in case of changing concepts we use synthetic
data and show how our approach adapts to concept drift better
than other approaches.

II. RELATED WORK

Over the past few years, deep neural networks have been
successfully applied to time series forecasting, in a variety
of applications like renewable energy prediction [14], web
traffic prediction [5], and weather forecasting [20]. This can be
attributed to their better generalization capabilities compared
to statistical approaches when the data involved contains high
degree of non-linearity. With the immense growth of IoT and
related monitoring and tracking applications, high-speed data
is generated in streaming context which is high-dimensional
in nature, containing complex non-linear relationships among
features. Moreover, this data often shows changes in the
underlying distribution as a result of factors like changes in
usage patterns, customer profiles and seasonality. To handle
this concept drift, incremental or online learning methods
have been proposed that continuously update the model’s
knowledge as new data becomes available in a streaming
fashion [17]. This eliminates the need to store the entire dataset
and also provides most up-to-date models at any point in time.

Past research [24] [7] demonstrates that no single model
performs consistently well over the entire input sequence and
different forecasters vary in their predictive performance when
it comes to forecasting for time series involving complex
inherent structures. This motivates the use of techniques [8]
involving either combination of different models in an ensem-
ble framework or selection of the best forecaster based on a
specific criteria [25]. Meta learning approaches [7] are widely
used where the selection of the model is based on a pre-defined
set of features. The idea is to define regions of competence for
each of the models to find out which models performs better on
which part of the input sequence and use this attribute to make
predictions at test time. The pace at which big data is generated
and its increasing complexity has brought the researchers to
explore newer techniques of processing big data to make it
applicable to machine learning algorithms. Meta learning is
one of those preferred techniques used for model selection
in big data analytics [18] as well. This approach has also
been used for automation of ML models in the manufacturing
industry [12] [13] to exploit industrial big data with minimum
intervention of an ML expert.

Saliency maps have been widely used in the context of
image classification. They help in visualising those parts of
the image which are salient or important in predicting the
target class [26]. This is achieved by creating class-specific
heatmaps which highlight the important regions of the image

to make the predictions explainable to a novice user. Only
recently, saliency maps have been used for the task of time
series prediction [2]. Both the temporal dimension as well
as features of time series data are used in a 2-stage CNN
architecture to explain which features and time intervals are
responsible for making the predictions. Other explainable
machine learning methods have been explored using big data
from varied domains like fraud detection [19], web usage [15]
to name a few.

In their recent work [22], Amal et. al. demonstrated further
how saliency maps can be used to map the performance
of candidate models over different parts of the time series
facilitating an online model selection framework which selects
the best forecaster to make prediction online. Though the work
attempts to cope with the evolving nature of the time series
by making model selection and prediction online, it trains the
candidate models offline along with offline ROC computation
which makes the whole process not extendable to streaming
data.

Our work introduces the prequential extension to their
offline framework by using saliency maps in calculating ROCs
in an online setting, making it possible to adapt model training
to the time series data stream. It also helps combine the
benefits of both model selection and explainability using
saliency maps.

III. PROPOSED METHOD

This section introduces our approach PS-PGSM showing the
parts of OS-PGSM framework which have been converted to
prequential computation. There are four stages in the frame-
work, namely: candidate model training, ROC computation
using saliency maps, model selection, and prediction. The
original framework, as designed in [22], performs the first 2
stages, i.e. model training and ROC calculation, in an offline
mode, assuming that the entire dataset is available in advance.
Time series Xt is split into training and validation sets, where
the training subset is used to train a pool of candidate models
offline and the validation set is used to calculate ROCs for
each of the candidate models, using a modified version of
Grad-CAM. The candidate models are created using the basic
structure of 1D convolutional layers while varying the filter
and kernel sizes along with the number of convolutional
layers. The addition of LSTM layer into the CNNs is done
to create further variations resulting in the pool consisting
of multiple candidate models (12 in original implementation).
Our approach aims to train these candidates in prequential
manner using minibatches of the time series dataset and uses
the same training minibatch to calculate the ROCs for each
model online. This makes the entire framework online and
easily adaptive to the changing underlying distribution of the
time series. Algorithm 1 outlines the steps involved in our
approach.

As shown in Figure 1, which outlines our approach of
prequential training and ROC computation, the time series
denoted by Xt is sequentially divided into i number of
minibatches, each of size j. Each minibatch, Xmini is first



Fig. 1. PS-PGSM: Prequential Selection using Performance Gradient based Saliency Maps for Time Series Forecasting

Algorithm 1 Prequential training and ROC computation
Input: i minibatches and n candidate models
Output: ROCs for each minibatch

1: Incrementally train n models using Xmini

2: Split Xmini into window size of w, Xmini,s
w

3: for each Xmini,s
w in Xmini do

4: for each sliding window of size nw in Xmini,s
w do

5: SMAPE = evaluateTrainedModels(n, window nw)
6: end for
7: best model(Cn)= argmin(SMAPE)
8: ROCs(Cn) = computeROC(Cn, Xmini,s

w , CAM )
9: end for

predicted using PS-PGSM model. The candidate models are
incrementally retrained on that minibatch, Xmini before mak-
ing predictions on the next minibatch. We continue in this
order for i iterations which is equal to the number of mini-
batches available. The next step involves calculation of ROC
online for all the trained models in that iteration using the
same minibatch as used for training. We can use the entire
or a subset of the training minibatch for the purpose of ROC
computation online. Xmini is further split into sub-sequences
with a window size of w giving Xmini,1

w , Xmini,2
w and so on

to get different evaluations of the candidate models similar
to [22]. These subsequences are used to calculate ROCs by
performing sliding window operations of size nw over each
Xmini,s

w with a step size of z equal to 1. The trained models
are then evaluated on the sliding window of size nw to find the

best model Cn with the lowest SMAPE error. ROC for model
Cn is then computed using saliency maps. It is important to
note that each model can have multiple regions of competence
(Rn

0 , R
n
1 , .., R

n
m) owing to the fact that the same model can

specialize on more than one region of the time series.
Saliency maps are generated using one of the most popular

methods i.e., gradient-based Class Activation Maps (CAM)
[23] which use feature maps (fmaps) from the last convolution
layer as it is known to preserve detailed spatial information.
Following [23], error ϵkn associated with every kth sub window
nw in the minibatch for each model n is used to evaluate the
performance of that model over the kth time interval. A weight
measure wϵ is then calculated by taking the gradient of ϵkn with
respect to each feature map A and then averaging over all the
activation units (U ) in A.

wϵ =
1

U

∑
u

∂ϵkn
∂Au

(1)

Subsequently, applying the ReLU helps in removing all the
negative contributions and Lk

n is used to find those areas in
the kth sub window of the minibatch that have contributed to
the error ϵkn.

Lk
n = ReLU

∑
fmaps

wϵA (2)

This aids in mapping the performance of a model to
the sequence of the input time series. The best model is
determined by comparing the obtained ROCs with the data
points in the test set and selecting the model corresponding
to the closest distance. However, if the distance between the



ROCs for all models and the input sequence is more than a
pre-defined threshold which is essentially a very large number
(1e8), then the best forecaster from the previous iteration is
selected.

IV. EXPERIMENTS

We run preliminary experiments to evaluate the performance
of PS-PGSM first on 10 time series datasets from [22]. For
these datasets, we split each into minibatches of size 110 and
prequentially train the models for as many iterations as the
number of minibatches created for each dataset which varies
according to the length of the datasets. We execute 20 runs
of the experiments for each dataset randomizing the seed to
initialize the models. We use the same pool of 12 candidate
CNN models used in [22] which are obtained by varying the
filter sizes in {32,64,128} and kernel sizes in {1,3}. In each
iteration, all of the 12 candidate models are trained for 1 epoch
with a fixed learning rate of 0.0001. Other parameters like the
size of sliding window within the validation set is set to 5
which remains unchanged. However, the main difference in
our approach is the fact that same minibatch is used for both
training the models and calculating ROCs for each of them.
It is important to note that for all datasets, the models are
trained for 100 epochs in the offline version while only being
trained for 1 epoch in our prequential approach as usually
done for streaming data in real-world applications. We then
use 2 time series big datasets to evaluate the suitability of
our approach for big data. To this end, we split the instances
into minibatch size of 100 and run the experiments for 8000
iterations keeping all the remaining model configurations same
as mentioned above. We also use synthetic time series dataset
which is composed of sequences of samples from 4 different
concepts repeated in random order to analyse the performance
of our approach in the presence of concept drift.

We compare the performance with the following baselines:
1) Random which selects a random model from the pool of

12 models further denoted in tables and plots as “Random
model”.

2) Previous Best which is the best model from the previous
iteration denoted as “Prev Best” in the tables and plots
and lastly,

3) Offline which is the model selected based on offline OS-
PGSM approach denoted as “Offline” in the tables and
plots.

We compare our approach PS-PGSM with the original
offline framework OS-PGSM by training the models offline
on data points making first 10 or 15 iterations of incremental
training (it differs depending on the length of the dataset being
used). These models are then used to predict on remaining data
points batch-wise taking 110 points at a time which corre-
sponds to minibatches from the last 7 iterations of prequential
training.

A. Dataset description

A detailed description of all the datasets used in the exper-
iments is as follows:

1) Datasets for preliminary analysis: To ensure consistency
and our ability to directly compare the results, we used
10 of the exact same real-world datasets from the original
work [22]. The 2 datasets for which we present a detailed
analysis of the results are Total rents from Bike sharing
dataset and Temperature T4 from the Energy dataset
which are described below. Additionally, we evaluate on
8 more datasets from [22] (Refer Supplementary material
of [22]). We use Total rents and Amount Registered from
bike dataset. We use a trimmed version containing first
2500 instances of Temperature T4, Temperature T5, and
Humidity RH1, Humidity RH2 values from the Energy
dataset. NASDAQ and RUSSELL datasets are also used
which include various features of these indices from
2010 to 2017 logged at per day frequency. Also, Ab-
normalHeartbeat dataset is used. All these datasets are
derived from a variety of different domains and are highly
relevant to the task of time series forecasting in real-world
applications.
• Total rents: This dataset is taken from the bike dataset.

Bike dataset comes from [10] which collects the usage
log of bike sharing system in Washington, D.C.,USA
over a period of 2 years, i.e., 2011 and 2012. It captures
the trip information including bike rental start date
and start station, end date and end station, duration
of journey, type of member: casual and registered
and weather information like temperature. The data
is recorded both on an hourly and daily basis. The
hourly time series consists of 17379 records in total
out of which only data corresponding from January 1 to
March 1, 2011 is used in [22] to ensure computational
efficiency.

• Temperature T4: This dataset is extracted from the
Energy dataset from the UCI Machine Learning repos-
itory. It contains data for energy used by appliances
in a low energy building. The temperature values are
logged at every 10 min from Jan. 11, 2016 17:00 to
May 27, 2016 18:00.

2) Big Data datasets: To verify the preliminary results from
smaller datasets hold for big data, we perform experi-
ments using 2 real-world big datasets commonly used
to benchmark in streaming context namely Household
Power Consumption taken from the UCI repository [9]
and NYC-Bike from [16]. Both datasets contain large
number of instances of the order of 800,000 to mimic
big data in a streaming context.
• Household Power Consumption: This dataset con-

tains measurements of electric power consumed in one
household over a span of 47 months from December
2006 to November 2010. It consists of 9 attributes with
a mix of electrical quantities like global active power,
global reactive power and voltage along with values
of 3 different sub meters. We use the global active
power which measures the global minute-averaged
active power (in kilowatt) of the household. The total



number of instances in this dataset are 2075259, out
of which we use 800,000 values.

• NYC-Bike: This dataset contains bike sharing data
from the New York City. It consists of trip data with
the following fields: trip duration, trip start time and
stop time, start station and end station longitudes and
latitudes along with user type and gender. We use the
data corresponding to trip duration from July 1, 2013
to July 31, 2013 with a total of 800,000 instances.

3) Synthetic time series data with Concept Drift: We gen-
erate a synthetic time series dataset using the python
package TimeSynth1. In this dataset, we concatenate
sequences of 500 samples for each of the 4 different
concepts namely auto-regressive, harmonic, gaussian and
Mackey-Glass signals. Each sequence represents a differ-
ent concept where white gaussian noise has been injected
along with the time series values. Concepts are repeated
in random order to create a dataset of 7000 samples.

Fig. 2. Comparative results of SMAPE using PS-PGSM, Random, Previous
Best and Offline for Total rents dataset

V. RESULTS AND EVALUATION

In this section, we present the results of our prequential
training and ROC computation approach on all the datasets
described in the previous section. We first show the summary
of the preliminary results for all 10 datasets in Table I followed
by in depth findings presented using plots for Total rents and
Temperature T4 datasets. The results obtained on big data are
documented in Table IV. Finally, the performance analysis is
evaluated on the synthetic time series dataset with concept
drift. SMAPE error is used to compare the performance of our
approach with the original method and the baselines. Based
on the preliminary results observed on the 10 small datasets,
we only run the experiments for PS-PGSM and previous best
model for big data. We skip the experiments with Random
model selection as it clearly performs worse than all the other
baselines on all the 10 datasets. We do not run the experiments

1Available at https://github.com/TimeSynth/TimeSynth

for offline OS-PGSM using big data as it takes prohibitively
more time to execute. A computational time study is given in
the next section for more details.

A. Preliminary results for 10 datasets

Table I shows a summary of the preliminary results which
includes the mean and standard deviation of the SMAPE
obtained for training and testing phase for all 10 datasets
across the 4 approaches. Only for the purpose of performance
comparison of the prequential and offline approach, we show
the average results split into the training and testing phase
which implies the offline version was trained during the
training phase while PS-PGSM was trained incrementally
across all iterations making up the training and testing phase.
A detailed analysis of Total rents and Temperature T4 datasets
is presented below, which shows that PS-PGSM provides
better results compared to offline OS-PGSM with a drop
of 3.45% and 10.86% in the mean error for both datasets
respectively. The same observations can be derived from the
average SMAPE values for the remaining 8 datasets as shown
in Table I. We observe a significant improvement of 63.26%
in the error rate when using PS-PGSM for Humidity RH1
dataset. However, for datasets like Amounts registered, the
improvement in the mean error is negligible at 1.23%. We
also observe that the previous best model performs better than
PS-PGSM in 3 out of the total 10 datasets which needs further
investigation. Overall, we obtain roughly 40-45% accuracy
improvement in the mean SMAPE using our approach, PS-
PGSM over offline one across all datasets.

1) Analysis of Total rents dataset: In Figure 2, we show
the performance of PS-PGSM and the baselines, the
solid line for each shows the mean of SMAPE error
across 20 runs with the shaded area depicting the 95%
confidence interval. The randomly selected forecaster
performs worst with the highest SMAPE across iterations
which is expected. To produce a fair comparison with
the original framework, we first train it for 15 iterations
and use the selected model from offline OS-PGSM to
predict on the same minibatches as used in the prequential
approach from iterations 16 to 22. As a consequence,
the red dotted line depicting the SMAPE for offline OS-
PGSM starts at the 16th iteration only. Figure 3 displays
box plots to show how the average error varies across
the different approaches both during training and testing
phase. It is clearly demonstrated that the model selected
using our prequential approach at each iteration produces
lower SMAPE error after 20 iterations compared to the
model selected through offline OS-PGSM which was
trained on instances up until 15th iteration. Mean SMAPE
for PS-PGSM is 0.4920 while its equal to 0.5096 for
offline OS-PGSM which is a percentage drop of 3.45%
only. However, this improvement in the behaviour can be
attributed to the fact that the models trained using our
prequential approach are sufficiently trained in the first
15 iterations to provide better results towards the end.
We also notice an interesting observation from Figure 2,



TABLE I
PRELIMINARY RESULTS FOR 10 DATASETS

Dataset SMAPE
Model Type

Random Prev Best PS-PGSM Offline
Training Testing Training Testing Training Testing Training Testing

Total Rents Mean 0.7164 0.6737 0.5871 0.4901 0.6070 0.4920 - 0.5096
Std dev 0.0911 0.1276 0.0703 0.0839 0.0754 0.0875 - 0.0526

Temperature T4 Mean 0.7106 0.6819 0.4302 0.4953 0.3681 0.3691 - 0.4141
Std dev 0.2231 0.2390 0.2031 0.2477 0.1750 0.1799 - 0.1603

AbnormalHeartbeat Mean 0.7031 0.7175 0.6279 0.6333 0.6334 0.6385 - 0.7042
Std dev 0.0762 0.0751 0.0692 0.0818 0.0567 0.0821 - 0.0487

Humidity RH1 Mean 0.7034 0.6387 0.4702 0.2991 0.3698 0.2238 - 0.5233
Std dev 0.2191 0.2827 0.2566 0.1964 0.1821 0.1297 - 0.2190

Humidity RH2 Mean 0.6868 0.6792 0.4311 0.3089 0.3949 0.2356 - 0.6414
Std dev 0.2253 0.2750 0.2340 0.2030 0.2133 0.1388 - 0.2648

Temperature T5 Mean 0.6982 0.6731 0.4583 0.4849 0.3841 0.3466 - 0.4939
Std dev 0.2326 0.2543 0.2572 0.2466 0.1968 0.2054 - 0.2298

NASDAQ Mean 0.7219 0.6366 0.4347 0.2476 0.3284 0.1849 - 0.4956
Std dev 0.2805 0.3144 0.2356 0.1822 0.1505 0.1440 - 0.1713

RUSSELL Mean 0.7110 0.6772 0.4111 0.2834 0.3111 0.2087 - 0.3650
Std dev 0.2819 0.2804 0.2377 0.1880 0.1481 0.1531 - 0.1368

Amounts registered Mean 0.7215 0.6775 0.5874 0.4991 0.6096 0.4954 - 0.5016
Std dev 0.0861 0.1354 0.0583 0.0855 0.0703 0.0932 - 0.0393

Temperature Mean 0.6018 0.4727 0.1619 0.1129 0.1605 0.0978 - 0.1637
Std dev 0.3237 0.3584 0.1189 0.0658 0.1173 0.0616 - 0.2011

Fig. 3. Box plots showing the average error for Total rents dataset during training (first 15 iterations) and testing (last 7 iterations)

TABLE II
FREQUENCY OF THE MODELS SELECTED BY EACH OF THE APPROACHES IN

THE LAST FIVE ITERATIONS FOR TOTAL RENTS DATASET

Dataset Approach Model
C0 C1 C2 C3 C4 C10

Total Rents

Random 1 1 1 1 - 1
Prev Best - - 4 - 1 -

Offline - - - - 5 -
PS-PGSM - - 3 - 2 -

which shows that previous best model performs at par
with our approach owing to the fact that the current
dataset being used shows a uniform trend with very minor
variability.

Figure 4 captures the ROCs computed for different mod-
els online in the last five iterations (iterations 18 - 22)
of a single run for Total rents dataset using PS-PGSM.
The x and y axis correspond to timesteps and target
value y respectively. Table II shows the frequency of
the models which were selected by all the approaches
during those iterations. We can see from Table II, model
C2 was selected 3 times by PS-PGSM, in Fig 4, those
are iterations 18, 20 and 22. Likewise, C4 gets selected
twice, once in iteration 19 and then again in iteration 21.
In iteration 18, C2 gets selected over C5 as the ROCs
of model C2 are closest to the input sequence in the
time series compared to ROCs corresponding to model
C5. It is important to note here that some models do not



Fig. 4. Plot showing the ROCs for different models in the last 5 iterations
for Total rents dataset.

have an ROC after applying the saliency maps due to two
reasons: first, a particular model is never selected in the
evaluation phase before ROC computation or second, the
value obtained from saliency maps is too small to create
a pattern and therefore it gets filtered out.

Fig. 5. Comparative results of SMAPE using PS-PGSM, Random, Previous
Best and Offline for Temperature T4 dataset.

Therefore, we display only the models with ROCs in the
plots and leave all the remaining models. However, in the
offline OS-PGSM approach, model C4 is selected once at
the time of prediction at 16th iteration and is then used to
predict for all the remaining instances. We also notice that
previous best selects C2 and C4 which results in similar

performance as above to our approach for this particular
dataset. As expected, Random always selects a different
model at each iteration. At this point, our prequential
approach proves beneficial over offline one because ROC
computation happens at each iteration to find the model
with ROC closest to incoming data pattern resulting in
lower error rate and adaptive to the changing trends in
the incoming data.

Fig. 6. Plot showing the ROCs for different models in the last 5 iterations
from top to bottom for Temperature T4 dataset.

2) Analysis of Temperature T4 dataset: Figure 5 shows the
comparative results for Temperature T4 dataset for the
4 approaches. It clearly shows that the model selected
using PS-PGSM performs better than both the baselines:
Random and Prev Best. Figure 7 uses box plots to
further zoom in to the average error and shows that our
PS-PGSM approach indeed gets better than the offline
OS-PGSM. The mean SMAPE for PS-PGSM is 0.3691
compared to offline OS-PGSM which is 0.4141. This
clears shows that the average error drops by 10.86% using
PS-PGSM.
We further analyse the model selection for a single run
on Temperature T4 dataset and plot the ROCs computed
in the last 5 iterations using PS-PGSM as shown in
Figure 6. Likewise, Table III shows the frequency of
the models selected by the different approaches during
those iterations. The offline OS-PGSM version chooses
C5 to predict for all the instances comprising the testing
phase i.e., 16-22 iterations. However, we observe that PS-
PGSM selects C1, C3, C7, C9 and C5 respectively for
the last five (18-22) iterations shown in Figure 6. The
same is indicated in Table III. These selections for each



TABLE III
FREQUENCY OF THE MODELS SELECTED BY EACH OF THE APPROACHES IN THE LAST FIVE ITERATIONS FOR TEMPERATURE T4 DATASET

Dataset Approach Model
C0 C1 C2 C3 C5 C6 C7 C8 C9 C11

Temperature T4

Random - - - - 1 1 1 1 - 1
Prev Best 1 1 3 - - - - - - -
Offline - - - - 5 - - - - -
PS-PGSM - 1 - 1 1 - 1 - 1 -

Fig. 7. Box plots showing the average error for Temperature T4 dataset during training(First 15 iterations) and testing(last 7 iterations)

iteration depend on the model having ROC closest to
the minibatch for that iteration. As stated above, each
model can have multiple ROCs but only a single model
is selected for each iteration. For example, in iteration
20, C7 gets selected over C1, C2 and C5 as the ROCs
of C7 are closest to the input sequence being predicted
for. Random baseline always selects a different model
which are not necessarily the same models selected by
other approaches. We observe that offline OS-PGSM
selects C5 across all 5 iterations whereas our approach
selects a different model at each iteration which clearly
results in lower average SMAPE and percentage drop of
10.8% over offline OS-PGSM as mentioned in the above
paragraph.

TABLE IV
RESULTS FOR BIG DATA

Big Dataset SMAPE Model Type

Prev Best PS-PGSM

House Power Consumption Mean 0.1537 0.1293
Std dev 0.1257 0.1050

NYC Bike Mean 0.7143 0.7155
Std dev 0.1063 0.1061

B. Analysis of experiments on Big Data

Table IV shows the mean and standard deviation of SMAPE
obtained after running the experiments on the 2 big datasets

Fig. 8. Moving Average plot for Household Power Consumption dataset.

mentioned in the previous section. The results on big data con-
firm the results obtained by running on preliminary datasets.
Our approach, PS-PGSM consistently outperforms in case of
big data as well with lower average SMAPE when compared
to the predictions from previous best forecaster. Figure 8
shows the moving average SMAPE over 8000 iterations for
both PS-PGSM and previous best forecaster for House Power



Fig. 9. Moving Average plot for NYC Bike dataset.

Consumption dataset. It can be clearly seen that PS-PGSM
performs consistently better than previous best forecaster on
House Power Consumption dataset. For the NYC bike data,
we see that previous best forecaster performs just as good as
our approach as shown in Figure 9. However, as will see in
the next section, our approach is still better as it adapts well to
concept drift compared with offline OS-PGSM and previous
best forecaster.

TABLE V
COMPUTATIONAL TIME STUDY

Model Type Computational Time (min)
120 Iterations 8000 Iterations

Prev Best 2.02 134.66
PS-PGSM 4.47 298.65

Offline 17.05 1136.66

C. Analysis of experiments on Synthetic Time Series

We perform experiments using synthetic time series mod-
elled with concept drift to account for the dynamic nature of
temporal data streams in real-world where concept changes
and recurrence of specific concepts is most likely to occur.
We observe that our approach is capable of handling concept
drift better than the original framework OS-PGSM which
employs a drift detection algorithm. This can be attributed to
the incremental training approach that we have adopted. Fig-
ure 10 shows the SMAPE obtained for the 3 approaches on a
synthetic time series dataset composed of 4 different concepts
as used in [3]. The concepts change at every 5 iterations/500
data points as indicated with the vertical lines on the graph.
The 4 concepts shown in the graph repeat in random order after
20th iteration until the 70th iteration. This means each concept
is repeating 2-3 times in the dataset containing a total of 7000
data points. Similar to the preliminary experiments we divide
70 iterations into training and testing to compare with offline
OS-PGSM. Therefore, the blue line in the plot starts only from

33rd iteration as the testing phase comprises iterations from
33-70. The graph shows evident peaks in the average SMAPE
each time a new concept is introduced in the data stream.
PS-PGSM clearly outperforms offline OS-PGSM which has
a drift detection mechanism in place. The average SMAPE
for offline is 0.5531 compared to 0.3969 for PS-PGSM which
is a drop of 28.24% in the average error rate. This shows
our approach is better at handling concept drift on streaming
data without the need of an explicit drift detection algorithm
which makes it less computationally expensive to implement
in streaming context. PS-PGSM also shows a percentage drop
of 13.07 when compared with previous best during the testing
phase. This clearly demonstrates that PS-PGSM is robust to
concept changes providing better performance compared with
all of the baselines.

D. Computational Time Analysis for Big Data

Table V shows the time taken to run the experiments on
big data by the various approaches. All the experiments are
performed in Python 3.7 environment running on MacBook
Pro with 2.4 GHz processor and 32 GB RAM. We have not
performed the experiments using offline OS-PGSM for 8000
iterations so the time shown in the table is just an estimated
projection of the actual time it would have taken to run it for
8000 iterations. This can be mainly attributed to the process of
drift detection which enriches the offline ROCs calculated in
the original work. Also, the training in OS-PGSM takes 100
epochs as compared to 1 epoch in our case. However, this
makes the execution process prohibitively slower. The table
shows that our approach is much faster compared to the offline
OS-PGSM taking almost one-third of the time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an online approach for model
training and ROC computation using saliency maps. The
results discussed in the previous section provide evidence that
prequential approach provides better results in the context of
streaming data. It is observed that in a real-world applica-
tion generating data continuously, we often do not have the
freedom and resources required to store and process historical
data. Our prequential approach is particularly suited for such
scenarios where it shows promising results compared to the
original framework which comprises offline training and ROC
calculation. In the future work, we will focus on improving
the current algorithm by computing ROCs only when required
as opposed to calculating them at each iteration. Another
direction to explore will be to define a strategy/threshold to
select the most appropriate forecaster among the models with
closest ROC and the previous best model.
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de-la Fuente-Valentı́n, and Juan M Corchado. Web traffic time series
forecasting using LSTM neural networks with distributed asynchronous
training. Mathematics, 9(4):421, 2021.

[6] Vitor Cerqueira, Luis Torgo, and Igor Mozetič. Evaluating time series
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