Machine Learning Platform for Extreme Scale
Computing on Compressed IoT Data

Dhaval Salwala
IBM Research Europe
Dublin, Ireland

Seshu Tirupathi
IBM Research Europe
Dublin, Ireland
seshutir @ie.ibm.com

Mark Purcell
IBM Research Europe
Dublin, Ireland
markpurcell @ie.ibm.com

Sgren Kejser Jensen
Aalborg University
Denmark
skj@cs.aau.dk

Torben Bach Pedersen
Aalborg University
Denmark
tbp@cs.aau.dk

Jonas Brusokas

Aalborg University
Denmark

jonasb@cs.aau.dk

Alexandros Kalimeris Stavros Maroulis

dhaval.vinodbhai.salwala@ibm.com

Christian Thomsen
Aalborg University
Denmark
chr@cs.aau.dk

Giorgos Alexiou

Athena Research Center Athena Research Center Athena Research Center
Greece

galexiou@athenarc.gr

George Papastefanatos

Ambrish Rawat
IBM Research Europe
Dublin, Ireland
Ambrish.Rawat@ie.ibm.com

Giulio Zizzo
IBM Research Europe
Dublin, Ireland
Giulio.Zizzo2 @ibm.com

Nguyen Ho Carlos E. Muniz Cuza
Aalborg University Aalborg University
Denmark Denmark

ntth@cs.aau.dk cemc@cs.aau.dk

Giorgos Giannopoulos Panagiotis Gidarakos

Greece
pgidar @athenarc.gr

Greece
giann @athenarc.gr

Ioannis Psarros Vassilis Stamatopoulos

Athena Research Center Athena Research Center Athena Research Center Athena Research Center Athena Research Center

Greece
stavmars @athenarc.gr

Greece
akalimeris @athenarc.gr

Manolis Terrovitis
Athena Research Center
Greece
mter @athenarc.gr

Abstract—With the lowering costs of sensors, high-volume and
high-velocity data are increasingly being generated and analyzed,
especially in IoT domains like energy and smart homes. Conse-
quently, applications that require accurate short-term forecasts
and predictions are also steadily increasing. In this paper, we
provide an overview of a novel end-to-end platform that provides
efficient ingestion, compression, transfer, query processing, and
machine learning-based analytics for high-frequency and high-
volume time series from IoT. The performance of the platform is
evaluated using real-world dataset from RES installations. The
results show the importance of high-frequency analytics and the
surprisingly positive impact of error bounded lossy compression
on machine learning in the form of AutoML. For example, when
detecting yaw misalignments in wind turbines, an improvement
of 9% in accuracy was observed for AutoML models on lossy
compressed data compared to the current industry standard of
10-minute aggregated data. Thus, these small-scale experiments
show the potential of the platform, and larger pilots are planned.

Index Terms—Big Data, Cloud, Edge, Lossless Data Compres-
sion, Lossy Data Compression, Machine Learning, Renewable
Energy Sources

This work has been supported by the MORE project (grant agreement
957345), funded by the EU Horizon 2020 program.

Greece
gpapas @athenarc.gr

Greece
bstam @athenarc.gr

Greece
ipsarros @athenarc.gr

I. INTRODUCTION

The widespread use of sensors and IoT devices in various
domains like healthcare, energy, smart homes are generating
huge volumes of time series data. Due to the high-volume
and high-velocity of the data being produced, sensor data
collected by monitoring Renewable Energy Sources (RES)
installations are currently being stored as simple aggregates,
e.g., 10-minute averages. This significantly reduces the amount
of storage required at the possible cost of informative outliers
and fluctuations. While analytics on aggregated time series
work for some use cases, there are many applications like time-
critical failure detection, very short-term forecasting, real-
time anomaly detection, etc where analytics on the raw high-
frequency time series is potentially required, e.g., [1], [2].

In addition, as the frequency at which the raw sensor
data is being generated increases, so does the challenge of
collecting and managing the raw high-frequency time series.
Thus, limiting the tools that can be provided for forecasting,
prediction, and diagnostics [3]. The lack of suitable tools
and techniques can be explained by the following four main
factors: (a) Volume — the size of the data is already bigger
than almost any other domain, (b) Velocity — the rate at which

data is generated is extremely high, since sensors sample
and report information at very high frequencies, (c) Variety —
the data exhibit a high degree of complexity when sequence,
timing order, and location are taken into consideration and the
features of interest are broad and diverse in different contexts,
(d) Veracity — reliability of sensor data is often questionable,
e.g., due to noise, communication failures, and faulty sensors.

The key objective of the MORE platform (Management of
Real-time Energy data) is to create a platform for time series
management, query processing, and machine learning (ML)-
based analytics that will expand the current state-of-the-art
for time series management systems (TSMSs) [4], [5] and
provide a complete platform for efficiently managing time
series from RES installations. In this paper, we provide an
overview of the MORE platform we currently are developing
to efficiently manage and analyze high-frequency time series
from RES installations. We also provide an overview of
the platform’s core algorithms and components, e.g., model-
based lossless compression, model-based lossy compression,
and ML algorithms for problems that are constrained by the
complexities mentioned above. As the current paper provides
a high-level overview of the MORE platform, references to
publications with more detailed information are also provided.
Finally, while the platform is currently being built with man-
agement and analytics of high-frequency time series from RES
installations as its core use case, it is general enough to be
used in other domains that require efficient management and
analytics of high-frequency time series. In summary, through
the development of the MORE platform, we have made the
following contributions:

(I) Performed an extensive survey of TSMSs developed
through academic or industrial research [5].
Analyzed the requirements and limitations for data
management and analytics of high-frequency time
series for RES installations on the edge and extended
ModelarDB to efficiently manage high-frequency
time series across the edge and the cloud [6].
Developed machine learning and pattern extraction
libraries and API framework for handling com-
pressed data.

The structure of the paper is as follows. Section II pro-
vides a short literature survey of TSMSs the supports lossy
compression and the effect of lossy compression on ML al-
gorithms. The architecture of the MORE platform is provided
in Section III. Then, an evaluation of the MORE platform
is provided in Section IV. Finally, our conclusion and future
work are provided in Section V.

am

(III)

II. RELATED WORK

There are two main aspects to consider when developing
extreme scale computing platforms for IoT: a) Efficient storage
of the time series through lossy compression as it provides
significantly lower storage requirements than lossless com-
pression [7] and subsequently efficient querying of the lossy
compressed time series. b) The performance impact of using
lossy compressed time series for ML algorithms.

Querying lossy compressed time series: A significant
number of TSMSs that support executing queries directly
on compressed representations of time series have been pro-
posed [4], [5]. TimeTravel [8] extends PostgreSQL with sup-
port for fitting models to time series and executing queries
on these models. The use of models allows the system to
provide a uniform interface for exact and approximate queries
on historical data as well as forecasting. SummaryStore [9]
stores time series using multiple different representations that
all can be combined as the data ages. This reduces the amount
of storage required but adds additional error. During query
processing, the query result may be approximate depending
on the representations used. M-DB [10] supports executing
queries on missing or out-of-order data points through user-
defined prediction methods. Tristan [11], [12] compresses time
series using dictionary encoding and supports executing some
queries directly on the compressed representation. Tristan’s
compression method was extended to take time series correla-
tion into account [13]. tspDB [14] extends PostgreSQL with
support for time series imputation and forecasting using an
incremental prediction method based on matrix factorization.
ModelarDB [15] fits multiple different types of models to
each time series as its structure changes over time. Each
dynamically sized sub-sequence is stored using the type of
model that provides the best compression ratio. ModelarDB
supports executing queries on the models and reconstructed
data points using two different views. ModelarDB was ex-
tended to compress groups of time series with similar values
together [16], [17] and to transfer data from edge to cloud [6].

Impact of lossy compression on ML algorithms: As lossy
compression is becoming more broadly used in TSMSs [4],
[5], it becomes necessary to develop a profound understanding
of the impact lossy compression has on ML algorithms.
The impact of lossy compression on change detection was
analyzed in [18]. Specifically, it was investigated how multiple
combinations of compression and change detection algorithms
perform on different datasets showing that precise detection
is possible even on heavily compressed data. The impact of
the lossy compression error on time series forecasting was
analyzed in [19] and actually showed a slight improvement in
the results for small error bounds. A similar study for time
series classification showed an improvement in the accuracy
of classification when compressed data is used [20]. Although
further analysis needs to be conducted [21], these results sug-
gest that lossy compression can be used to efficiently manage
high-volume and high-velocity time series data produced by
RES installations while also maintaining the accuracy of the
ML algorithms that consume the data and in some cases even
improve it.

To summarize, while there are isolated solutions for each of
the extreme-scale computing challenges that prevent manage-
ment and analytics of IoT data at scale, there is a clear need for
a holistic solution that seamlessly integrates management of
time series through lossy compression and ML algorithms on
data compressed using lossy compression in a unified platform.

III. ARCHITECTURE OF THE MORE PLATFORM

The architecture of the MORE platform is shown in Fig. 1
and consists of five open-source libraries and systems that are
being developed/enhanced for the platform:

o ModelarDB' — A TSMS designed to efficiently manage
high-frequency time series through lossy compression. It
provides management of data on the edge, transfer of data
to the cloud, and management of data in the cloud.

o SAIL (Streams and Incremental Learning)”> — Incremental
learning library for big data. Also supports neural network
batch learning models.

o MoreUtils® — API library for interacting with ModelarDB
and ML life-cycle components.

o more-pattern-extraction* — Library for identifying inter-
esting patterns (motifs, change-points, deviations) on RES
time series.

o complex-event-detection® — Library for detecting behav-
iors and deviations that signify potential issues on RES
time series.

These five libraries and systems cover all the aspects of the
IoT data lifecycle such as ingesting the sensor data on the edge
nodes, lossy compression, transfer to the cloud, and analytics
using ML algorithms on lossy compressed data in the cloud.
These steps are explained in detail below.

To manage the large amount of high-frequency time series,
the platform uses and extends the TSMS ModelarDB [6],
[15]-[17]. The TSMS ingests and compresses the time series
on the edge using model-based lossy compression. In the
context of ModelarDB, a model is any representation that can
reconstruct the values for a dynamically-sized sub-sequence
of the original time series within a user-defined per-value
error bound (possibly 0%). For example, the linear function
f(t) = 0.03t + 2.5 is a model as shown in Fig. 2. Instead
of storing the raw time series, ModelarDB only stores the
coefficients for the models and enough metadata to recon-
struct the raw time series within the user-defined error bound
(possibly 0%). The user-defined error bound and the length
of the sub-sequences are generally positively correlated, thus
additional compression can be achieved if the error bound is
increased. However, in contrast to using simple aggregates for
compression, since ModelarDB uses a per-value error bound,
important fluctuations and outliers are preserved if they exceed
the error bound. As stated, ModelarDB also supports 0% error
bounds such that lossless compression is possible. A maximum
length for the sub-sequences can also be set for some models.

Concretely, raw sensor readings are first received from
an MQTT broker. A model is then fitted to the received
data points using a set of model types. ModelarDB currently
includes three different model types: constant [22], linear [23],
and lossless [24]. A set of model types is used as the structure

Uhttps://github.com/skejserjensen/ModelarDB
Zhttps://github.com/IBM/sail/
3https://github.com/IBM/more-utils/
“https://github.com/MORE-EU/more-pattern-extraction
Shttps://github.com/MORE-EU/complex-event-detection

of time series very often changes over time. ModelarDB gener-
ally provides better compression than existing storage formats
when using the included model types [15], [17]. However, it
is very simple for users to optionally add additional model
types which are optimized for their domain by implementing
two simple Java interfaces (ModelType and Segment) and
pointing to the resulting classes in ModelarDB’s configuration.
For additional details see [6]. When a new data point is
received that none of the model types can fit a model to, i.e.,
when the error bound or length bound would be exceeded,
the model that provides the best compression ratio for the
previous data points is emitted and new models are fitted to
the forthcoming data points. As soon as a model is emitted, it
can be used to answer queries. Thus, ModelarDB’s ingestion
method provides both very a high degree of compression
within a user-defined error bound and support for real-time
ingestion of high-frequency sensor data using the limited hard-
ware resources that are available on the edge nodes. On the
edge nodes, the metadata and models are stored in the RDBMS
H2, as columnar Apache ORC files, or as columnar Apache
Parquet files. For additional details about ModelarDB’s file-
based data store see [6].

When the amount of compressed data, i.e., metadata and
models, reaches a user-defined size, it is transferred by Mod-
elarDB to the cloud. Since bandwidth can be limited for
RES installations in remote locations, e.g, 500 Kbits/s to
5 Mbits/s, a very high level of compression is needed to
transfer the high-frequency time series. ModelarDB’s data
transfer component uses Apache Arrow Flight in order to
efficiently transfer the compressed data. On the cloud, data is
stored in Apache Cassandra, columnar Apache ORC files, or
columnar Apache Parquet files. The current version of the data
transfer component simply transfers the metadata and models
in batches. However, multiple optimizations are planned. (i)
The data transfer component should optimize use of bandwidth
such that urgent data is transferred immediately, while less
critical data are transferred in bulk later when bandwidth is
available. (ii) Shared prediction should be applied on the edge
and in the cloud to reduce the amount of bandwidth used and
improve latency. (iii) When similar models are received in the
cloud, they should be combined if possible within the error
bound to further reduce the amount of storage required.

In addition to its model-based compression, ModelarDB
has also been extended to efficiently support derived time
series, i.e., time series that can be computed from other
time series. For example, when angles are measured over
time, practitioners often store both a time series with the raw
measurements in the form (¢,v) and a similar time series
with data points of the form (¢,sin(v x 7/180)). Instead of
physically storing the latter, ModelarDB can store information
about the transformation to apply, similar to a view in an
RDBMS. To ensure the derived time series are efficiently
computed, dynamic code generation is used to generate Java
bytecode for the functions at runtime. For additional details
about derived time series see [6].

ModelarDB uses SQL as its query language and exposes

RES Edge

ModelarDB Server

Mc;gelarDB Edge
Data Apdche|
Ingestion ﬂ Data Ariow

Storage & Transfer
Query Engine

mp —art I{ g

Edge Analytics
Engine
Model Training
& Edge forecast
Models

Data
Transfer

pache
rrow

Apache
Arrow

Real-time
Processing

Pattern
Recognition

Complex Event
Detection

¢ Alerting

IMLA & Scalable
Forecating

Cloud

Model Storage &
Query Engine

raw measurements, motifs,
models, device data etc.

Pilots & Applications

Apache Arrow
Wind Park
l KPI Dashboards
[“Apache Arrow | Visual Analytics Prediction
| Alerting
: Analytics apt) | sty ARl
Cassandra NTR | Analytics Solar Park
v Engine KPI Dashboards
Cassandra On-demand z Prediction

Processing Alerting

l
"

Cluster

Pattern
Extraction

| 1dv [npisa

—-= =5

*
|

T AutoML
A

"

Park |
Operator

£
|

Cassandra NTR

A
|
|
|
|
|
|
|
|
|

Cassandra NTR |
| Business

Restful API
sty I User

Fig. 1. Architecture diagram of MORE platform.

Value
Value

Timestamp Timestamp

Fig. 2. Computation of SUM for a model of type Swing using the Data
Point View (Left) and the Segment View (Right). The data points ModelarDB
originally ingested are Red, while the reconstructed data points are Black.

the stored time series at two different levels through the
Data Point View and the Segment View. The Data Point View
exposes the time series as data points reconstructed from
the metadata and models so arbitrary SQL queries can be
executed. While the Data Point View can support arbitrary
SQL queries, many aggregates can be computed much more
efficiently directly from the metadata and models. To do
so, ModelarDB exposes the time series as metadata and
models through the Segment View and provides a selection of
User-Defined Functions (UDFs) and User-Defined Aggregate
Functions (UDAFs) for computing aggregates directly from
the metadata and models. An example that computes SUM for
a linear model of type Swing is shown Fig. 2. For the Data
Point View (left), SUM is computed in linear time by summing
the values reconstructed from the metadata and model using
the equation f(t) = a X ¢t + b where the result and ¢ are
the value and timestamp of each data point, respectively. For
the Segment View SUM (right), SUM is computed in constant
time for the model by computing the value of the first data
point represented by the metadata and model v;, computing
the value of the last data point represented by the metadata
and model v,,, and then computing SUM as ((v1 +v,)/2) Xn
where n is the number of data points represented by the model.

After the compressed data has been transferred to the
ModelarDB instance deployed in the cloud, clients can query
it through an HTTP or Socket interface that returns JSON or

On-demand Processing
via MoreUtils Python package

R
loT Upload/download
Forecasts
x On-Demand - f .
request for
D:tanms -t
e Seris MoreUtils

ModelarDB System

Apache [0

Arrow Apache Python Util
Flight Arrow for MORE

Interface applications

Data
Ingestors

=

Datapoints

B

P
Model
lifecycle
\ D)

Fig. 3. MoreUtils component architecture.

an Apache Arrow Flight interface that returns Apache Arrow.
To simplify retrieving data for analytics and visualization
MoreUtils can be used as shown in Fig. 3. The Blue Box
represents the client infrastructure of which MoreUtils is
a part. MoreUtils is an API library written in Python to
support MORE applications with operations related to the
high-frequency time series data, such as retrieving compressed
data points from ModelarDB and maintaining the ML model’s
lifecycle. It uses the PyArrow interface by default via PyMod-
elarDB to efficiently retrieve data points from ModelarDB.
However, the HTTP and Socket interfaces are also supported.
Using these interfaces, MoreUtils makes it seamless to retrieve
decompressed data points from ModelarDB. When a client
requests data points via MoreUtils, a matching request is sent
to ModelarDB. ModelarDB then rewrites the predicates in the
query so they can be pushed to the data store it is configured
to use, in this example Apache Cassandra, retrieves at least
the required metadata and models from Apache Cassandra,
reconstructs at least the requested data points, and then trans-
fers the requested data points to the client. When it receives
the data points, MoreUtils performs several operations, such
as joining the univariate time series by their timestamps to
create a multivariate time series and labeling the resulting
value columns based on their time series id. MoreUltils also

[]
]
]

COS Provider

e

K8s cluster

Cassandra

dependencies Cluster APIs Database adaptors

m Oter Batatases

Abstraction Layer
Store Forecast
Data

Messaging adaptors

—_—

PyCloud
Messenger
(Open-source
by 1BM)

Concrete Classes (APIs)

getDataModels() getRawDatal) S'°:ﬂ::’5 ML

Fig. 4. Machine learning model APIs and model life-cycle management.

provides APIs for reading time series one data point at a time
or as batches of data points. Several data filters are available
to suit specific use cases. Additionally, MoreUtils provides
coherent APIs to manage the ML model lifecycle as shown
in Fig. 4. For example, it provides functionality for uploading
and downloading ML models to/from Cloud Object Service
(COS). The forecasts made by ML models can also be stored
in one of the several data stores like Apache Cassandra.

The Pattern Extraction and Complex Event Detection com-
ponents also exploit the aforementioned APIs to use ML and
data mining techniques in order to detect patterns of particular
significance for the RES use case. Specifically, they allow
the offline extraction of interesting patterns that may denote
a specific phenomenon, e.g. soiling on solar panels, or a
changepoint, e.g. a solar panel washing event, as well as the
online detection of patterns and change-points, e.g. that Yaw
Misalignment (YM) has taken place on a wind turbine.

Similarly, batch and incremental models are supported
through a common set of APIs. Specifically, Scikit-learn based
fit, partial_fit, and predict models within the SAIL library for
regression, classification, anomaly detection, and clustering for
time series data. Standard Scikit-learn based AutoML algo-
rithms can also be run for the models available in SAIL. As
stated, ML and pattern extraction models retrieve reconstructed
data points from ModelarDB using the MoreUtils package.

IV. EVALUATION

The MORE platform is evaluated using real-world datasets
from RES installation to study the effect ModelarDB’s lossy
compression and the downstream impact of the compressed
data on ML algorithms. First, we used ModelarDB to ingest
a real-world RES dataset to evaluate the effect of its lossy
compression and support for derived time series on the storage
cost. The original dataset consists of 180 time series stored as
Apache ORC files (6.3 GiB) of which 72 are derivable. As
shown in Fig. 5, even with a 0%-error bound, the storage
cost is reduced by 47.62%. Similarly, the amount of storage
required reduces by 57.14%, 68.25%, and 76.19% for a 1%-
, 5%-, and 10%-error bound, respectively. This significant
reduction makes it possible to store and analyze much larger
datasets than other RDBMs, and TSMSs. Also, applying the
compression already on the edge makes it possible to transfer

80

S
=
g
i 60
Q
g
3
7]
[
40
0 1 5 10
Error bound (%)

Fig. 5. % reduction in the amount of storage used when using ModelarDB.

much larger datasets over connections with very limited band-
width. For more detailed evaluations of ModelarDB’s ingestion
speed, compression, and query performance see [15] and [17].
For example, it was shown in [17] that ModelarDB provides
up to 13.7x higher ingestion speed, requires up to 113x
less storage, and can execute aggregate queries up to 573x
faster than InfluxDB, Apache Cassandra, Apache Parquet, and
Apache ORC.

Next, we used real-life data from wind turbines to evaluate
the effect on AutoML algorithms when the data is compressed
by ModelarDB at different error bounds for yaw misalignment.
YM has been identified as an important factor that reduces the
efficiency of wind parks. Wind turbines are aligned with inflow
wind direction to maximize energy generation. However, YM
is a phenomenon in wind turbines that results in significant
power reduction. ML models have been developed in this
section to detect YM in one hour windows where high-
frequency data can provide better insights [25].

Specifically, we considered high-frequency (HF) data (4
sec), 10 minute aggregates (10 min agg), 1 minute aggregates
(1 min agg), and data compressed by ModelarDB with the
error bounds {2%, 5%, 10%, 20%}, respectively. The dataset
contains data from June 6th, 2018, to March 12th, 2019, at 4
second frequency. The dataset has the following six attributes
as features: wind speed, pitch angle, rotor speed, active power,
nacelle direction, and wind direction. The data set has active
power as the target variable. The model is trained to predict
active power based on the features provided in the dataset
between February 12th and March 12th where no YM was
detected. The data was transformed using techniques described
in [26].

The difference between 1 hour aggregated predicted active
power and observed active power was taken and normalized
with the average active power observed for the training period.
Since YM results in reduced active power, a user-defined
parameter defines the threshold for the difference in aggregated
active power to detect YM. The parameter is set to 0.08 in
the experiments defined below. Thus, the YM problem can
be formalized as a trivial binary classification task using this
threshold parameter. Multi-layer Perceptron (MLP) models

10 min agg
1 min agg

4 sec (HF)

EB 2

EB 5

EB 10

EB 20

0.65

H

I
I
ODEmE@

0.6

fl-score

0.55

b66e ulw T
(dH) 235
z93

sg3

0T €3

oz @3

o
(%]
66e uiw o1 }-m—q

Data compressions

Fig. 6. fl-score of the best AutoML model to detect YM when using different
compression methods and parameters. EB is a shorthand for error bound.

were trained to predict active power with the following pa-
rameters: hidden_layer_sizes — [[40,40], [50,50], [100,100],
[20,20]] and activation — [’relu’ ,tanh’, ’logistic’].

Finally, AutoML (based on GridSearchCV on the trans-
formed dataset) was used to find the best model for each
combination of compression method and parameter. The ex-
periment was repeated 10 times and the average results are
presented. The R2 score and RMSE for all combinations of
compression methods and parameters are shown in Table I and
show that the best model from AutoML is able to learn to a
high accuracy across all combinations of compression methods
and parameters. However, the accuracy of the models differs
across the different combinations of compression methods and
parameters as shown in Table II. The best combination of
compression methods and error bound have an accuracy of
9 percentage points higher than the 10 minute aggregated data
which is the current industry standard [27]. This underlines
the importance of high-frequency data for IoT applications and
that data compressed using lossy compression can be used to
detect YM.

Fig. 6 shows the fl-score for the best models trained using
data compressed using different combinations of compression
methods and parameters. As can be observed, the accuracy
of the model trained using data compressed by ModelarDB
with an error bound equal to or less than 10% are much more
accurate than the model trained using 10 minute averages. The
models also become more stable as the error bound increases
from raw data to an error bound of 10% with the interquartile
range getting narrower. This is probably because the noise in
the data gets smoothed to a higher degree when the error bound
is increased. Finally, it is important to note that the accuracy of
the model trained on data compressed with a 10% error bound
is better than the model trained using 1 min aggregates as well.
The 1 min aggregates on the other hand require slightly less
storage than when the data set is compressed with a 10% error
bound, approximately the same amount of storage as when
ModelarDB uses a 14-16% error bound. However, as more
data is ingested from the wind park, using simple 1 minutes
aggregates for compression means the amount of storage used
should increase close to linearly while the amount of storage

used by ModelarDB should decrease at an increasingly lower
rate due to the planned functionality for combining similar
models from different wind turbines. Model types specifically
optimized for this wind turbine data set could also be added to
reduce the amount of storage required. Finally, ModelarDB’s
per-value error bound guarantees that important outliers and
fluctuations that exceed the error bound are preserved, while
the 1 min aggregates do not.

TABLE I
R2 SCORE AND RMSE FOR THE TEST SET USING THE BEST AUTOML
MODEL AVERAGED ACROSS 10 RUNS FOR VARIOUS TYPES OF
COMPRESSIONS.

data R2 | RMSE
10 min agg | 0.96 61.79
1 min agg 0.97 52.43
4 sec (HF) | 0.93 70.63
EB 2% 0.93 73.62
EB 5% 0.94 62.10
EB 10% 0.93 96.83
EB 20% 0.95 70.97
TABLE II

AVERAGE MODEL METRICS OF THE BEST AUTOML MODELS USED TO
DETECT YM ACROSS 10 RUNS FOR VARIOUS TYPES OF COMPRESSION.

data precision | fl-score | accuracy
10 min agg 0.85 0.50 0.58
1 min agg 0.88 0.60 0.65
4 sec (HF) 0.85 0.63 0.67
EB 2% 0.82 0.63 0.67
EB 5% 0.76 0.63 0.65
EB 10% 0.77 0.63 0.65
EB 20% 0.78 0.53 0.60

V. CONCLUSION AND FUTURE WORK

We presented an overview of a novel extreme scale com-
puting platform for compressed IoT data. This work shows
the potential of scalability of the platform as more and more
sensors are added where model-based compression of time
series and derived time series can significantly reduce the
amount of storage required while still maintaining the re-
quired accuracy for advanced ML-based analytics. incremental
machine learning algorithms have also been implemented
considering the size of the data.

For future work, AutoML on streaming data remains an
open challenge and will be explored. Also, the system com-
ponents and APIs will be developed such that the ML models,
Pattern Extraction, and Complex Event Detection components
can use the models created by ModelarDB directly as features
instead of reconstructed data points.

REFERENCES

[1] Circonus, “Smart grid,” https://www.circonus.com/solutions/smart-grid/,
2022, accessed: 2022-08-11.

[2] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers,
A. Singh, and M. Srivastava, “NILMTK: An open source toolkit for
non-intrusive load monitoring,” in Proceedings of the 5th International
Conference on Future Energy Systems, ser. E-Energy '14. ACM, Jun.
2014, pp. 265-276.

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Khare and M. Totaro, “Big data in iot,” in 2019 10th International
Conference on Computing, Communication and Networking Technolo-
gies (ICCCNT). 1IEEE, 2019, pp. 1-7.

S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time Series Manage-
ment Systems: A Survey,” IEEE Trans. Knowl. and Data Eng., vol. 29,
no. 11, 2017.

——, “Time Series Management Systems: A 2022 Survey,” in Data
Series Management and Analytics (Forthcoming), T. Palpanas and
K. Zoumpatianos, Eds. ACM.

S. K. Jensen, C. Thomsen, and T. B. Pedersen, “ModelarDB: Integrated
Model-Based Management of Time Series from Edge to Cloud,” Trans.
Large-Scale Data- and Knowledge-Centered Syst., vol. (Forthcoming).
N. Q. V. Hung, H. Jeung, and K. Aberer, “An Evaluation of Model-
Based Approaches to Sensor Data Compression,” IEEE Trans. Knowl.
and Data Eng., vol. 25, no. 11, pp. 2434-2447, 2013.

M. E. Khalefa, U. Fischer, T. B. Pedersen, and W. Lehner, “Model-based
Integration of Past & Future in TimeTravel,” Proc. VLDB Endowment,
vol. 5, no. 12, pp. 1974-1977, 2012.

N. Agrawal and A. Vulimiri, “Low-Latency Analytics on Colossal Data
Streams with SummaryStore,” in Proc. 26th ACM Symp. on Operating
System Principles. ACM, 2017, pp. 647-664.

V. Arora, M. J. Amiri, D. Agrawal, and A. E. Abbadi, “M-DB:
A Continuous Data Processing and Monitoring Framework for IoT
Applications,” in 2019 Int. Conf. on Internet of Things and IEEE Green
Computing and Communications and IEEE Cyber, Physical and Social
Computing and IEEE Smart Data. 1EEE, 2019, pp. 1096-1105.

A. Marascu, P. Pompey, E. Bouillet, O. Verscheure, M. Wurst, M. Grund,
and P. Cudre-Mauroux, “MiSTRAL: An Architecture for Low-Latency
Analytics on Massive Time Series,” in Proc. 2013 IEEE Int. Conf. on
Big Data. 1EEE, 2013, pp. 15-21.

A. Marascu, P. Pompey, E. Bouillet, M. Wurst, O. Verscheure, M. Grund,
and P. Cudre-Mauroux, “TRISTAN: Real-Time Analytics on Massive
Time Series Using Sparse Dictionary Compression,” in Proc. 2014 IEEE
Int. Conf. on Big Data. 1EEE, 2014, pp. 291-300.

A. Khelifati, M. Khayati, and P. Cudré-Mauroux, “CORAD: Correlation-
Aware Compression of Massive Time Series using Sparse Dictionary
Coding,” in Proc. 2019 IEEE Int. Conf. on Big Data. IEEE, 2019.
A. Agarwal, A. Alomar, and D. Shah, “tspDB: Time Series Predict DB,”
in NeurlPS 2020 Competition and Demonstration Track. PMLR, 2020,
pp. 27-56.

S. K. Jensen, T. B. Pedersen, and C. Thomsen, “ModelarDB: Modular
Model-Based Time Series Management with Spark and Cassandra,”
Proc. VLDB Endowment, vol. 11, no. 11, pp. 1688-1701, 2018.

——, “Demonstration of ModelarDB: Model-Based Management of
Dimensional Time Series,” in Proc. ACM SIGMOD Int. Conf. on
Management of Data. ACM, 2019, pp. 1933-1936.

——, “Scalable Model-Based Management of Correlated Dimensional
Time Series in ModelarDB_,” in Proc. 37th Int. Conf. on Data Engi-
neering, 2021.

G. Hollmig, M. Horne, S. Leimkiihler, F. Scholl, C. Strunk, A. Englhardt,
P. Efros, E. Buchmann, and K. Bohm, “An evaluation of combinations
of lossy compression and change-detection approaches for time-series
data,” Information Systems, vol. 65, pp. 65-77, 2017.

F. Eichinger, P. Efros, S. Karnouskos, and K. Bohm, “A time-series
compression technique and its application to the smart grid,” The VLDB
Journal, vol. 24, no. 2, pp. 193-218, 2015.

A. Moon, J. Kim, J. Zhang, and S. W. Son, “Evaluating fidelity of lossy
compression on spatiotemporal data from an iot enabled smart farm,”
Computers and Electronics in Agriculture, vol. 154, pp. 304-313, 2018.
F. Cappello, S. Di, and A. M. Gok, “Fulfilling the promises of lossy
compression for scientific applications,” in Smoky Mountains Computa-
tional Sciences and Engineering Conference. Springer, 2020.

I. Lazaridis and S. Mehrotra, “Capturing Sensor-Generated Time Series
with Quality Guarantees,” in Proceedings of ICDE. IEEE, 2003.

H. Elmeleegy, A. K. Elmagarmid, E. Cecchet, W. G. Aref, and
W. Zwaenepoel, “Online piece-wise linear approximation of numerical
streams with precision guarantees,” PVLDB, vol. 2, no. 1, 2009.

T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and
K. Veeraraghavan, “Gorilla: A Fast, Scalable, In-Memory Time Series
Database,” PVLDB, vol. 8, no. 12, pp. 1816-1827, 2015.

Thomas van Delft, “Yaw optimization using high-frequency wind
turbine data,” https://dnv.com/article/yaw-optimization-using-high-
frequency-wind-turbine-data-186379, 2022, accessed: 2022-08-11.

[26]

(271

L. Gao and J. Hong, “Data-driven yaw misalignment correction for
utility-scale wind turbines,” Journal of Renewable and Sustainable
Energy, vol. 13, no. 6, p. 063302, 2021.

E. Gonzalez, B. Stephen, D. Infield, and J. Melero, “On the use
of high-frequency scada data for improved wind turbine performance
monitoring,” in Journal of Physics: Conference Series, vol. 926, no. 1.
IOP Publishing, 2017.

