MORE | Management of Real-time Energy Data - Goals


Green Energy | MORE - Management of Real-time Energy Data
MORE | Management of Real-time Energy Data - Green Energy

Use AI to Increase the efficiency of wind turbines and solar parks and to increase the accuracy of forecasting.

Industrial Leadership | MORE - Management of Real-time Energy Data
MORE | Management of Real-time Energy Data - Industrial Leadership

Enable EU stakeholders to offer better renewable energy production facilities, with reduced maintenance costs, and accurate return of investment prediction.

Extreme data analytics | MORE - Management of Real-time Energy Data
MORE | Management of Real-time Energy Data - Extreme data analytics

Create a data analytics platform that will be able to manage extreme loads of sensor streaming data and time series.

Accurate forecasting | MORE - Management of Real-time Energy Data
MORE | Management of Real-time Energy Data - Accurate forecasting

Provide accurate forecasting and prediction through AI algorithms that work over huge volumes of streaming data.

News


MORE General Logo | MORE - Management of Real-time Energy Data

MORE | Management of Real-time Energy Data - The first MORE's Newsletter

In this newsletter, we are happy to bring you some of the most interesting outcomes of the project. ENGIE Laborelec explains the potential gains to the wind energy production by having the suitable data analysis tools, and the University of Aalborg investigates the impact of compressing monitoring data from the wind and solar parks. IBM presents the Streams and Incremental Learning (SAIL) library created in the context of MORE, and Athena Research details the method for detecting soiling of solar parks.

MORE General Logo | MORE - Management of Real-time Energy Data

MORE | Management of Real-time Energy Data - IT, big data and machine learning challenges in time series data - Renewable Energy Sources (RES) sector | Management of Real-time Energy Data

You are cordially invited to the bi-annual IBM-Athena colloquium series on the industry challenges due to the exponential growth of time-series data. The colloquium series strives to cover the challenges arising from high frequency and/or high volume time series data in various sectors like RES, water, inventory management etc.

MORE General Logo | MORE - Management of Real-time Energy Data

MORE | Management of Real-time Energy Data - Incremental models for time-series data

Wind turbines generate optimal power output when the turbine blades are perpendicular to the wind direction. However, due to technical errors or malfunctioned sensors, this is not always the case - when a wind turbine does not face the wind it is defined as yaw misalignment. Detecting and correcting yaw misalignment creates a direct impact on the bottom line of wind farm companies.

MORE General Logo | MORE - Management of Real-time Energy Data

MORE | Management of Real-time Energy Data - Tight Bounds for Approximate Near Neighbor Searching for Time Series under the Fréchet Distance

On the 9th of January 2022, Ioannis Psarros presented the paper "Tight Bounds for Approximate Near Neighbor Searching for Time Series under the Fréchet Distance" in the ACM-SIAM Symposium on Discrete Algorithms (SODA) 2022.

MORE | Management of Real-time Energy Data - In a nutshell


MORE will deliver a platform that will address the technical challenges in time series and stream management, focusing on the RES industry. More specifically, MORE’s platform will introduce an architecture that combines edge computing and cloud computing to be able to address both responsiveness and the need for sophisticated analytics simultaneously. This architecture will be combined with the usage of time series summarization techniques, or as we more accurately term them in MORE, modelling techniques for sensor data. Models are any compressed representations that allow the reconstruction of the original data points of a time series (e.g. a linear function) within a known error-bound (possibly zero). This approach has synergies with the edge computing approach, since summarization can be done at the edge, reducing the load in the whole data processing pipeline. The key objective of MORE is the following:



MORE will allow stakeholders in industry sectors with huge volumes of sensor data, especially the RES industry, to: a) scale the management of streaming and historical time series beyond an order of magnitude beyond the state-of-art and b) to perform forecasting, prediction and diagnostics using the whole data that is available to them with accuracy that outperforms existing approaches.

MORE | Management of Real-time Energy Data - Partners


Athena Innovation Center | MORE - Management of Real-time Energy Data
AAU | MORE - Management of Real-time Energy Data
Inaccess | MORE - Management of Real-time Energy Data
IBM | MORE - Management of Real-time Energy Data
Perception Dynamics | MORE - Management of Real-time Energy Data
ENGIE Laborelec | MORE - Management of Real-time Energy Data
Modelar Data | MORE - Management of Real-time Energy Data

MORE | Management of Real-time Energy Data - Contact